skip to main content


Search for: All records

Creators/Authors contains: "Ye, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. MLC NAND flash memory uses the voltages of the memory cells to represent bits. High voltages cause much more damage on the cells than low voltages. The free space that need not store bits is leveraged to reduce the usage of those high voltages and thus extend the lifetime of the MLC memory. However, limited by the conventional data representation rule that represents bits by the voltage of one single cell, the high voltages are still used in a high probability. To fully explore the potential of the free space on reducing the usage of high voltages, we propose a novel data representation aware of damage, named DREAM. DREAM uses the voltage combinations of multiple cells instead of the voltage of one single cell to represent bits. It enables to represent the same bits through flexibly replacing the high voltages in some cells with the low voltages in other cells when free space is available. Hence, high voltages which cause more damage are less used and the lifetime of the MLC memory is extended. Theoretical analysis results demonstrate the effectiveness and efficiency of DREAM. 
    more » « less
  2. null (Ed.)
    We report a precision measurement of the parity-violating asymmetry APV in the elastic scattering of longitudinally polarized electrons from 208Pb. We measure APV=550±16(stat)±8(syst) parts per billion, leading to an extraction of the neutral weak form factor FW(Q2=0.00616  GeV2)=0.368±0.013. Combined with our previous measurement, the extracted neutron skin thickness is Rn−Rp=0.283±0.071  fm. The result also yields the first significant direct measurement of the interior weak density of 208Pb: ρ0W=−0.0796±0.0036(exp)±0.0013(theo)  fm−3 leading to the interior baryon density ρ0b=0.1480±0.0036(exp)±0.0013(theo)  fm−3. The measurement accurately constrains the density dependence of the symmetry energy of nuclear matter near saturation density, with implications for the size and composition of neutron stars. 
    more » « less
  3. null (Ed.)